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The exterior analytic solution for a static, spherically symmetric system is given 
by means of a set of gauge field equations from Lorentz gravity in the curvature 
coordinate. The correction contributed by the gravitational gauge field in the 
exterior of a static sphere is obtained for the gravity. 

1. I N T R O D U C T I O N  

Massouri  and Chang  (1976) obtained the field equat ions o f  Lorentz  
gravity 

i i - -  i i 
R ~ -  V ~ R - - C T ~ , - p t  o (1) 

+ = -PF~ll~, (2) 

which were all given by Shao and Xu (1986). In  the above equations,  
i = 0, 1, 2, 3 is the moving frame index, i.e., Lorentz  index; Greek letters/z,  
r , . . .  are the natural  f rame indices on the spacet ime manifold  M ;  p is the 
gauge gravitat ional  constant ;  C =8zrk  (k is the Newtonian  gravitational 
constant) ;  R is the Einstein curvature scalar on M ;  and R~ is the Ricci 
tensor  in the moving frame. 

i T~ is the mass tensor  in the moving frame, and t o is the energy- 
m o m e n t u m  tensor  o f  gauge field in the same frame as above,  where 

1 d(~cEmV) 
2 v  (3) 

Ac~ i i ' = - t r ( F ~ F  ) V~ +�88 t r(Fa~F a~) V~ (4) t o 
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~ = ~m(O, O,/z) is the Lagrangian of the matter field qs, V = det(V~) and 
V~ are the Lorentz vierbein fields, which are gauge potentials in the gauge 
theory of gravity (GTG). We have 

F ~  = ( G - 9  (5) 
with 

O;~B ~j - 0 ~B~j + B ~ k B  ~j - B ~kB~j (6) 

Here F . ~  is the curvature tensor of M in the moving frame and it is also 
the gauge field strength in GTG, B~j are the coefficients of the Lorentz 
connection and they correspond to the gauge potentials in GTG. 

K ~ and S~ in (2) are cotorsion and the spin current of the matter field 
~, respectively, and 

K ~  Qo ~ k -= - -  - V ~ V ~  ( 7 )  

10(~V)  
v (S) 

where 

Q~ = ( VkA -- vk~+ B ~ -  B~A) V7 V) V~ (9) 

is the torsion tensor of M in the moving frame. The "11" in (2) denotes the 
twofold covariant derivative in the natural and moving frames, and 

F~II. = F ~ , ~ - ~ . ~ i l k j  B k j F ~  ~ -  F~"~r __ try FU~" (10) 

If the spacetime manifold M is a Riemann space (torsion free), we write 
the gauge equations (1) and (2) in the natural frame as 

1 = - ( C T . ~ + p t ~ )  (11) R~ ~ - ~gu ~R 

C S ~  ~ (12)  = - p F ~  il~ 

and expression (4) becomes 

t ~  = - t r (  R ~ n X ~ ) g ~  + ~ tr(RA~Rh=)g~ (13) 

In this paper, we give the exterior solution of the above equations for 
a static, symmetric system (provided p = 1). 

2. THE SOLUTION OF FIELD EQUATIONS 

In order to obtain the exterior solution for (11) and (12) in static and 
spherically symmetric spacetime, we can write (11) and (12) as 

R g .  - l g ~ R  = - t ~  (14) 
/ ~ o -  - -  F.~ tl~ - 0 (15) 
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where p = 1 is supposed,  and let 

gt,~ = d i a g ( - B ,  A, r 2, r 2 sin 2 0) 

Here A and B are componen t s  o f  the spacetime metric to be solved and 
are funct ions o f  r. Using the above metric, we find the nonvanishing  
componen t s  o f  the Riemann  tensor  as follows: 

R1212 ~- t A - I  B - I (  2 A B B " -  A B  ' 2 -  A ' B B ' )  

R1313 1 - - - t ~ r  =~,a  JJ r, R 1 4 1 4 = � 8 9  0 

R2323 1 . 4 - - 1 a t  1 --1 t = ~ZA ./A r ,  R2424 = ~A A r s i n  2 0 

R3434 = A - I ( A  - 1)r 2 sin 2 0 

where 

d A  d B  
A ' -  B ' -  

d r  ' d r  

From the above expressions o f  the Riemann tensor,  R ~ ,  R can be given, 
and then substituting them into (13), we can obtain G~. With the help o f  
a computer ,  (14) yields 

( 4 A 2 B 2 B  ,,2 _ 4 A 2 B B , 2 B  . _  4 A A , B Z B , B  , + A 2 B  '4 

+ 2 A A ' B B  '3 + A ' 2 B 2 B  '2) r 4 + 3 2 A 2 A ' B 4 r  3 

+ ( 8 A 2 B 2 B  '2 _ 8A,2B4 + 32A4B 4 - 3 2 A 3 B 4 )  r 2 

- 16A4B4+ 3 2 A 3 B  4 - 1 6 A 2 B  4 = 0 

( 4 A 2 B 2 B  . 2 _  4 A 2 B B , 2 B  , ,_  4 A A , B 2 B , B  . + A 2 B  '4 

+ 2 A A ' B B  '3 + A '2B2B '2  ) r 4 _  3 2 A 3 B 3 B , r  3 

+ (8A,2B4 + 32A4B 4 _ 32A 3 B 4 _ 8 A 2 B 2 B , 2 ) r  2 

- 16A4B4 + 3 2 A 3 B  4 - 16A2B 4 = 0 

( 4 A 2 B 2 B  .2 - 4 A 2 B B , 2 B , , _  4 A A , B 2 B , B , ,  + 1 6 A 3 B 3 B  ,, 

+ A 2 B ' 4 +  2 A A , B B  ,3 + A ' 2 B 2 B  '2 _ 8 A 3 B 2 B  ,2 

- 8 A 2 A ' B 3 B ' ) r 4 +  ( 1 6 A 3 B 3 B  ' - 1 6 A 2 A ' B 4 )  r 3 

- 1 6 A 4 B g + 3 2 A 3 B 4 -  16A2B 4= 0 

Only two of  the above three equat ions are independent .  Simplifying 
them, we obtain  

A ' B  + A B ' =  0 (16) 

( A B ' 2 + A ' B B ' - 2 A B B " ) r 2 + 4 ( A ' B 2 - A B B ' ) r + 4 ( A 2 B 2 - A B 2 ) = O  (17) 

Via (16), we easily have 

A B  = A 
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(A is a constant independent of r). For convenience, let y = A -1, B = Ay in 
(17), and notice 

A' = _y-2y, B' = Ay', B"= Ay" 

After rearranging terms in (17), we find 

r2y"+4ry '-2(1 - y )  = 0 

From the differential equation, 

e l  8' 2 

y = 1 + r  q y2 

where el, e2 are constants. Therefore, the solution of  equation (14) in the 
curvature coordinates can be written as 

. , E l .  82"~ - 1  a / ' l ,  e l .  82" ~ 
A =  ( l - r + 7 }  , B = * 7 + 7 }  (18) 

Obviously, when r--> oo, spacetime should be asymptotically flat, and thus 
A = 1. Using (18) and components of the Riemann tensor as given previously 
in this section, equation (15) can be satisfied by means of the formulation 
of (10) considering B~j a the coefficients of the Lorentz connection. 

In addition, when r is very large, the third term in (18) will be very 
small in comparison with the second term, and A, B must agree with the 
Schwarzschild metric, so that 

el = -2km/  c 2 

where k is Newton's gravitational constant and m is the total mass of the 
spherical body producing the gravitational field, and c is the velocity of  
light. For convenient comparison, we let e~ = xm, replacing e2 with X, another 
constant. We therefore obtain the analytic solution for the gauge field 
equations (14), (15) in the curvature coordinates: 

( ( 2krn+xrn'~ ( -2km+Xrn~-I r 2 ) 
&,~=diag - 1 -  r r 2 ] ,  1 r r 2 ]  ' r2, sin 20 (19) 

3. CONCLUSION 

(i) The result of this paper shows that the existence of the gauge field 
of  gravitation will affect the metric of spacetime. Equation (19) gives the 
gauge correction due to the gauge field of gravitation to the Schwarzschild 
metric solution. 

(ii) The term xm/r  2 in (19) reflects the effect of the gauge field of 
gravitation on the metric of spacetime. X will be related to the coupling 
constant p. 
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(iii) We may use the correction to the result to explain the difference 
between observed and theoretical results in the tests of  general relativity, 
and this may lead to a way of determining the constant X. 

(iv) Because (19) is an exact expression and the term x m / r  2 will make 
the variation of g ~  with r different from that of  the Schwarzschild metric, 
to a certain extent, G T G  may be used to explain the existence of some 
"fifth force." 
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